Dado o triângulo abc retângulo em ae com lados ab ac 5cm qual a medida do seu terceiro lado

  • Denunciar

SENAI – CENTRO DE FORMAÇÃO PROFISSIONAL “AFONSO GRECO” Nome: Data:___/___/___ Instrutor: Paulo T. Curso: Manutenção Mecânica Industrial Turno: Matutino Vespertino Noturno Modalidade: Aprendizagem Industrial Curso Técnico Qualificação Aperfeiçoamento Conteúdo: Cálculo Aplicado Valor: Nota: Para um triângulo retângulo qualquer, defina CATETOS e HIPOTENUSA. Aponte cada desses elementos em um desenho esquemático e, caso exista, determine a relação matémática entre tais elementos. Dado o triângulo ABC, retângulo em A e com lados AB = AC = 10 cm, qual a medida do seu terceiro lado? Qual a área da figura abaixo? Escala gráfica, segundo Vesentini e Vlach (1996, p. 50), “é aquela que expressa diretamente os valores da realidade mapeada num gráfico situado na parte inferior de um mapa”.Nesse sentido, considerando que a escala de um mapa está representada como 1:25000 e que duas cidades, A e B, nesse mapa, estão distantes, entre si, 5cm, qual a distância real entre essas cidades? Determine em hectares, a área a ser desmatada de uma região de 200 km² de floresta Amazônica, considerando que os órgãos de defesa do meio ambiente permitiram derrubar somente 5% da região citada. (DADO: 1 ha = 10.000 m2) Considerando os ângulos a e b, sabendo que a soma deles resulta em 90°, calcule: Seno Tg b: Cos a:

  • larissamathiasolivei
  • há 11 meses
  • Matemática
  • 57

Questão 08 - Dado o triângulo ABC, retângulo em A e com lados AB = AC = 10 cm, qual a medida do seu terceiro lado? *a) 10√2b) 15√2c) 17√2c) 14√2d) 9√2


RESPONDER

A semelhança de triângulos consiste, de modo geral, na proporção entre dois ou mais triângulos, ou seja, são proporcionais se, e somente se, todos os seus lados e ângulos internos forem proporcionais ao outro triângulo. Convenhamos que verificar todos esses elementos um a um gera um pouco de trabalho. A fim de facilitar o processo, vamos estudar os casos de semelhança nos quais é necessário verificar somente três desses elementos.

Leia também: Propriedades do triângulo equilátero

Triângulos semelhantes

Dados dois triângulos ABC e A’B’C’, vamos dizer que eles são semelhantes se, e somente se, os ângulos correspondentes são congruentes na mesma ordem, ou seja, se os ângulos são iguais e se os lados correspondentes são ordenadamente proporcionais. Veja:

Ângulos correspondentes congruentes:

A = A'

B = A'

C = A'

Lados correspondentes proporcionais:

A'B' = B'C' = A'C' = k
AB BC AC

O número k nas razões entre os lados é chamado de constante de proporcionalidade, e as razões são chamadas de razões de proporcionalidade.

Exemplo

Vamos verificar se os triângulos a seguir são proporcionais.

Observe que a correspondência entre os ângulos dos triângulos azul e vermelho é dada por:

A = 65° = B’

B = 45° = A’

C = 70° = C’

Veja também que o lado A’B’ está para o lado AB, que o lado B’C’ está para o lado AC e que o lado A’C’ está para o lado BC, ou seja:

Note que, nessa ordem, podemos encontrar uma proporção entre os lados em que a constante de proporcionalidade é igual a 1/3, ou seja, para construir o triângulo A’B’C’, basta multiplicar cada lado do triângulo ABC por 1/3. Assim, temos que os triângulos são semelhantes na seguinte ordem:

ABC ~ B’A’C’

Veja também: Condição de existência de um triângulo

Teorema fundamental da semelhança de triângulos

Considere inicialmente um triângulo DEF e considere uma reta paralela GH ao lado.

“O teorema fundamental da semelhança de triângulos afirma que toda reta paralela a um dos lados do triângulo que intercepta os outros dois lados determina um segundo triângulo semelhante ao primeiro.”

No triângulo acima, vamos ter a seguinte semelhança:

DFE ~ GFH

Exemplo

No triângulo ABC, o segmento DE é paralelo ao lado BC. Sabe-se também que AB = 8 cm, AC = 10 cm e AD = 2 cm. Determine o comprimento dos segmentos AE e EC.

Como o segmento DE é paralelo ao lado BC do triângulo ABC, pelo teorema fundamental da semelhança de triângulos, temos que os triângulos ABC e ADE são semelhantes, logo seus lados, de modo ordenado, são proporcionais, então:

Veja também que o lado AC é dado pela soma AE + EC. Substituindo os valores de cada lado, temos:

AC = AE + EC

10 = 2,5 + EC

10 – 2,5 = EC

EC = 7,5 cm

Portanto, AE = 2,5 cm e EC = 7,5 cm.

Saiba também: Relações no triângulo retângulo

Casos de semelhança de triângulos

Vimos que, para verificar se dois triângulos são, de fato, semelhantes ,é necessário que todos os ângulos correspondentes sejam iguais e que os lados correspondentes sejam proporcionais, entretanto não é necessário verificar as seis condições. Veremos a seguir casos de semelhança que facilitam tal verificação.

Vamos dizer que dois triângulos são semelhantes se dois ângulos de um triângulo são iguais a dois ângulos do outro triângulo.

Se dois ângulos são congruentes, os triângulos são semelhantes e a volta também é verdadeira, isto é, caso dois triângulos sejam semelhantes, então podemos afirmar que dois ângulos correspondentes são iguais.

Dizemos que dois triângulos são semelhantes se dois lados são proporcionais e os ângulos entre esses lados são congruentes, isto é, iguais.

A condição para que esses dois triângulos sejam semelhantes é que a razão entre AB e A’B’ seja igual à razão entre os lados AC e A’C’, ou seja, que os lados sejam proporcionais. Além disso, o ângulo compreendido entre esses lados deve ser igual: Â = Â.

Nesse caso, também vale a volta da afirmação, ou seja, se dois triângulos são semelhantes, então podemos afirmar que dois de seus lados são proporcionais e que os ângulos entre esses lados são iguais.

Dois triângulos são ditos semelhantes se os três lados do primeiro triângulo são ordenadamente proporcionais aos lados do segundo triângulo.

Nesse caso, para que os triângulos sejam semelhantes, os lados correspondentes devem ser iguais.

Exemplo

Considere os triângulos a seguir. Sabendo que eles são semelhantes, determine os valores de a, b e c. O perímetro do triângulo maior é igual a 84 cm.

Por hipótese, os triângulos são semelhantes. Podemos dizer ainda que a semelhança é pelo caso LLL, ou seja, ABC ~ A’B’C’, portanto:

Como o perímetro do triângulo maior é igual a 84 cm, temos que:

a + b + c = 84

7k + 9k + 5k = 84

21k = 84

k =4

Substituindo os valores de k nas igualdades, temos:

a = 7 · (4) → a = 28 cm

b = 9 · (4) → b = 36 cm

c = 5 · (4) → c = 20 cm

Exercícios resolvidos

Questão 1 – (PUC-Campinas) Os triângulos ABC e AED, representados na figura a seguir, são semelhantes, sendo os ângulos D e C congruentes.

Se BC = 16 cm, AC = 20 cm, AD = 10 cm e AE = 10,4 cm, o perímetro do quadrilátero BCED, em centímetros, é:

a) 32,6

b) 36,4

c) 40,8

d) 42,6

e) 44,4

Solução

Alternativa e.

Os triângulos ABC e AED são semelhantes, logo seus lados, nessa ordem, formam uma proporção. Das propriedades de proporção, temos:

Multiplicando cruzado as duas primeiras frações, temos:

20 · DE = 10 · 16

20 · DE = 160

DE = 8 cm

Agora, multiplicando cruzado a primeira fração com a terceira, temos:

20 · 10,4 = 10 · (10 + BD)

208 = 100 + 10 · BD

10 ·BD = 208 – 100

10 · BD = 108

BD = 10,8 cm

Note que o lado AC é dado por AE + CE. Substituindo os valores conhecidos, temos:

AC = AE + CE

20 = 10,4 + CE

CE = 20 – 10,4

CE = 9,6 cm

E portanto o perímetro do quadrilátero BCED é:

BC + CE + DE + DB

16 + 9,6 + 8 + 10,8

44,4 cm  

O triângulo retângulo recebe esse nome porque um de seus ângulos possui a medida de 90º, ou seja, é um ângulo reto. Sendo um dos polígonos mais estudados na geometria plana, foi possível perceber algumas relações entre os ângulos e também entre os lados dessa figura.

O teorema de Pitágoras, por exemplo, foi desenvolvido depois da percepção de que existe uma relação entre as medidas dos lados do triângulo. Assim, conhecendo as medidas de dois lados do triângulo, é possível calcular o valor do terceiro lado. O teorema de Pitágoras diz que a soma do quadrado dos catetos é sempre igual ao quadrado da hipotenusa.

Além do teorema de Pitágoras, outra área importante desenvolvida por meio dos estudos desse triângulo foi a trigonometria, em que são desenvolvidas as razões entre os lados do triângulo, conhecidas como seno, cosseno e tangente. Por intermédio dessas razões, percebeu-se que existe uma proporção entre as medidas dos lados de triângulos retângulos que possuem ângulos iguais.

Leia também: Quais são os pontos notáveis de um triângulo?

Características do triângulo retângulo

Objeto com formato de um triângulo retângulo

O triângulo retângulo é um polígono que possui três lados e três ângulos, e um desses ângulos é  reto, ou seja, possui 90º. Os outros dois ângulos são agudos, ou seja, menores que 90º. O maior lado, que fica sempre oposto ao ângulo de 90º, é conhecido como hipotenusa, e os outros dois são chamados de catetos.

O triângulo retângulo preserva todas as propriedades já conhecidas do triângulo comum, como o fato de a soma dos ângulos internos ser igual a 180º. Como a soma é sempre 180º e um dos seus ângulos já possui 90º, podemos afirmar que os outros dois ângulos são sempre complementares, ou seja, a soma deles também é igual a 90º.

a e b → catetos

c →  hipotenusa

Perímetro do triângulo retângulo

O perímetro de um polígono qualquer é o comprimento da soma de todos os seus lados. Então, para calcular o perímetro do triângulo retângulo, bastar somar os seus lados.

P = a + b + c

A área do triângulo retângulo, assim como de um triângulo qualquer, é a metade do produto entre a base e a altura. O que o triângulo retângulo tem de especial é que um de seus catetos coincide com a sua altura, já que eles são perpendiculares entre si, então, para calcular a área, multiplicamos os catetos e dividimos o resultado por dois.

Exemplo:

Calcule o perímetro e área do triângulo retângulo a seguir sabendo que seus lados foram dados em centímetros.

P = 8 + 15 + 17

P = 40 cm

Agora vamos calcular a área:

Veja também: Calculando a área de um triângulo utilizando os ângulos

Teorema de Pitágoras

O teorema mais conhecido na Matemática é, sem dúvidas, o teorema de Pitágoras. A partir desse teorema, foi possível perceber que os lados de um triângulo retângulo se relacionam da seguinte maneira: dado um triângulo retângulo qualquer, a soma do quadrado dos catetos é igual à hipotenusa ao quadrado.

a² + b² = c²

a e b → catetos

c → hipotenusa

A partir desse teorema, é possível descobrir o valor de qualquer um dos lados de um triângulo retângulo, desde que se conheçam os outros dois.

Exemplo:

Qual o valor da hipotenusa do triângulo retângulo abaixo sabendo que suas medidas são dadas em centímetro?

Aplicando o teorema de Pitágoras, temos que:

6² + 8² = x ²

36 + 64 = x²

100 = x²

x² = 100

x= √100

x = 10 cm

Para saber mais sobre essa importante relação, leia o texto: Teorema de Pitágoras.

Trigonometria no triângulo retângulo

O nome trigonometria já remete ao seu objeto de estudo:

  • tri → três;
  • gono → ângulo;
  •  metria → métrica ou medida.

Sendo assim, a trigonometria é a área da Matemática que estuda a relação entre as medidas dos ângulos do triângulo e aqui vamos nos ater ao triângulo retângulo. A trigonometria estuda a razão entre os lados do triângulo de acordo com o seu ângulo. Com isso, foi possível desenvolver conceitos importantes, que são as razões seno, cosseno e tangente. Vale dizer que outras razões trigonométricas foram desenvolvidas com o aprofundamento do estudo da trigonometria no círculo trigonométrico.

Antes de compreender o que é cada uma dessas razões, é importante entender o que é um cateto oposto e o que é um cateto adjacente a um ângulo de um triângulo.

Como vimos, a hipotenusa é o lado representado pelo segmento AB, pois ela é sempre o maior lado do triângulo e também o lado que fica de frente ao ângulo de 90º. Os outros lados são conhecidos como catetos. Dependendo do ângulo que tomamos como referência, o cateto pode ser oposto ou adjacente.

O cateto é conhecido como oposto quando ele fica de frente ao ângulo. O cateto que está oposto ao ângulo ꞵ, por exemplo, é o lado AC; por outro lado, o cateto que está oposto ao ângulo ɑ é o lado BC.

O cateto é conhecido como adjacente quando ele forma o ângulo junto à hipotenusa. Note que o ângulo ꞵ está entre o lado BC e AB. Como AB é hipotenusa do triângulo retângulo, então o AB é um cateto adjacente ao ângulo ꞵ. Empregando o mesmo raciocínio, é possível perceber que o lado AC é o cateto adjacente do ângulo ɑ.

Entendendo cada um dos lados do triângulo, é possível compreender as razões trigonométricas.

Para aplicar as razões trigonométricas, devemos conhecer os ângulos notáveis, isto é, os ângulos de 30º, 45º e 60º. A maioria dos problemas de provas e vestibulares está ligada a esses ângulos, sendo necessário, portanto, conhecer os valores das razões de cada um deles.

Veja a tabela com o valor do seno, cosseno e tangente para os ângulos notáveis:

Sabendo o valor das razões trigonométricas do triângulo, por meio de um lado e um ângulo, é possível encontrar todos os lados de um triângulo retângulo a partir da trigonometria.

Exemplo:

Encontre o valor de x.

Para encontrar o valor de x, vamos analisar o ângulo que foi dado. Note que ele é adjacente ao lado de que conhecemos a medida, ou seja, AC é cateto adjacente ao ângulo de 30º. Então, aplicaremos a razão tangente, que relaciona o cateto adjacente e a hipotenusa. Além disso, ao conferir a tabela, sabemos que cosseno de 30º é igual a √3/2.

Acesse também: 4 erros mais cometidos na trigonometria básica

Exercícios resolvidos

Questão 1 – (IFG) Teodolito é um instrumento de precisão para medir ângulos horizontais e ângulos verticais, utilizado em trabalhos de construção. Uma empresa foi contratada para pintar um edifício de quatro andares. Para descobrir a área total a ser pintada, ela precisa descobrir a altura do edifício. Uma pessoa posiciona o instrumento a 1,65 metros de altura, encontrando um ângulo de 30°, conforme mostra a figura. Supondo que o teodolito esteja distante13√3 metros do edifício, qual a altura, em metros, do prédio a ser pintado?

A) 11,65

B) 12,65

C) 13,65

D) 14,65

E) 15,65

Resolução

Alternativa D.

Como queremos encontrar o cateto oposto ao ângulo de 30º, sabendo que a distância 13√3, que é a distância do teodolito até o prédio, é o cateto adjacente ao ângulo de 30°, então usaremos a tangente:

Agora somaremos 13 + 1,65 = 14,65 metros de altura.

Questão 2 – Para realizar um plantio em sua propriedade, um fazendeiro dividiu seu terreno cultivável no formato retangular ao meio, em sua diagonal, formando dois triângulos retângulos. Nessa divisão, metade do terreno será cercado com arame, sendo utilizados 4 fios. Sabendo que as dimensões do terreno é de 20 metros de largura e 21 metros de comprimento, qual será a metragem gasta em fio?

A) 29 metros

B) 70 metros

C) 140 metros

D) 210 metros

E) 280 metros

Resolução

Alternativa E.

Primeiro vamos encontrar a diagonal do terreno, que é a hipotenusa do triângulo retângulo. Para facilitar, faremos a imagem da situação:

Então, temos que:

d² = 20² + 21²

d² = 400 + 441

d² = 841

d = √841

d=29

Para dar uma volta, temos que 29 + 20 + 21 = 70 metros, como serão 4 voltas, 70 · 4 = 280 metros.

Por Raul Rodrigues de Oliveira
Professor de Matemática

Última postagem

Tag