Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.

1. Amann R. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 29: 469–487, 2008. [PubMed] [Google Scholar]

2. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA 105: 14976–14980, 2008. [PMC free article] [PubMed] [Google Scholar]

3. Arnold SL, Kent T, Hogarth CA, Schlatt S, Prasad B, Haenisch M, Walsh T, Muller CH, Griswold MD, Amory JK, Isoherranen N. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J Lipid Res 56: 342–357, 2015. [PMC free article] [PubMed] [Google Scholar]

4. Ballow D, Meistrich ML, Matzuk M, Rajkovic A. Sohlh1 is essential for spermatogonial differentiation. Dev Biol 294: 161–167, 2006. [PubMed] [Google Scholar]

5. Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 38: 1430–1434, 2006. [PubMed] [Google Scholar]

6. Bartlett JM, Weinbauer GF, Nieschlag E. Stability of spermatogenic synchronization achieved by depletion and restoration of vitamin A in rats. Biol Reprod 42: 603–612, 1990. [PubMed] [Google Scholar]

7. Berry DC, Jacobs H, Marwarha G, Gely-Pernot A, O'Byrne SM, DeSantis D, Klopfenstein M, Feret B, Dennefeld C, Blaner WS, Croniger CM, Mark M, Noy N, Ghyselinck NB. The STRA6 receptor is essential for retinol-binding protein-induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. J Biol Chem 288: 24528–24539, 2013. [PMC free article] [PubMed] [Google Scholar]

8. Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P. Retinoid signaling determines germ cell fate in mice. Science 312: 596–600, 2006. [PubMed] [Google Scholar]

9. Bowles J, Koopman P. Sex determination in mammalian germ cells: extrinsic versus intrinsic factors. Reproduction 139: 943–958, 2010. [PubMed] [Google Scholar]

10. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36: 647–652, 2004. [PubMed] [Google Scholar]

11. Buageaw A, Sukhwani M, Ben-Yehudah A, Ehmcke J, Rawe VY, Pholpramool C, Orwig KE, Schlatt S. GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biol Reprod 73: 1011–1016, 2005. [PubMed] [Google Scholar]

12. Busada JT, Kaye EP, Renegar RH, Geyer CB. Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse. Biol Reprod 90: 64, 2014. [PMC free article] [PubMed] [Google Scholar]

13. Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, Oatley JM. Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28: 1351–1362, 2014. [PMC free article] [PubMed] [Google Scholar]

14. Chapman MS. Vitamin A: history, current uses, controversies. Semin Cutan Med Surg 31: 11–16, 2012. [PubMed] [Google Scholar]

15. Chung SS, Choi C, Wang X, Hallock L, Wolgemuth DJ. Aberrant distribution of junctional complex components in retinoic acid receptor alpha-deficient mice. Microsc Res Technique 73: 583–596, 2010. [PMC free article] [PubMed] [Google Scholar]

16. Chung SS, Wang X, Wolgemuth DJ. Expression of retinoic acid receptor alpha in the germline is essential for proper cellular association and spermiogenesis during spermatogenesis. Development 136: 2091–2100, 2009. [PMC free article] [PubMed] [Google Scholar]

17. Chung SS, Wang X, Wolgemuth DJ. Male sterility in mice lacking retinoic acid receptor alpha involves specific abnormalities in spermiogenesis. Differentiation Res Biol Diversity 73: 188–198, 2005. [PMC free article] [PubMed] [Google Scholar]

18. Chung SS, Wolgemuth DJ. Role of retinoid signaling in the regulation of spermatogenesis. Cytogenetic Genome Res 105: 189–202, 2004. [PMC free article] [PubMed] [Google Scholar]

19. Clermont Y. Kinetics of Spermatogenesis in Mammmals. Physiol Rev 52: 198–204, 1972. [PubMed] [Google Scholar]

20. Cool J, Capel B. Mixed signals: development of the testis. Semin Reprod Med 27: 5–13, 2009. [PubMed] [Google Scholar]

21. Cool J, DeFalco T, Capel B. Testis formation in the fetal mouse: dynamic and complex de novo tubulogenesis. Wiley Interdiscip Rev Dev Biol 1: 847–859, 2012. [PubMed] [Google Scholar]

22. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, Orwig KE, Wolgemuth DJ, Pandolfi PP. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36: 653–659, 2004. [PubMed] [Google Scholar]

23. Creemers LB, den Ouden K, van Pelt AM, de Rooij DG. Maintenance of adult mouse type A spermatogonia in vitro: influence of serum and growth factors and comparison with prepubertal spermatogonial cell culture. Reproduction 124: 791–799, 2002. [PubMed] [Google Scholar]

24. Davis JC, Snyder EM, Hogarth CA, Small C, Griswold MD. Induction of spermatogenic synchrony by retinoic acid in neonatal mice. Spermatogenesis 3: e23180, 2013. [PMC free article] [PubMed] [Google Scholar]

25. De Rooij D. Spermatogonial stem cell renewal in the mouse. I. Normal situation. Cell Tissue Kinet 6: 281–287, 1973. [PubMed] [Google Scholar]

26. De Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction 121: 347–354, 2001. [PubMed] [Google Scholar]

27. De Rooij DG, Griswold MD. Questions about spermatogonia posed and answered since 2000. J Androl 33: 1085–1095, 2012. [PubMed] [Google Scholar]

28. De Rooij DG, Okabe M, Nishimune Y. Arrest of spermatogonial differentiation in jsd/jsd, Sl17H/Sl17H, and cryptorchid mice. Biol Reprod 61: 842–847, 1999. [PubMed] [Google Scholar]

29. De Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 21: 776–798, 2000. [PubMed] [Google Scholar]

30. De Rooij DG, van Dissel Emiliani FM, van Pelt AM. Regulation of spermatogonial proliferation. Ann NY Acad Sci 564: 140–153, 1989. [PubMed] [Google Scholar]

31. Drobeck HP, Coulston F. Inhibition and recovery of spermatogenesis in rats, monkeys, and dogs medicated with bis(dichloroacetyl)diamines. Exp Mol Pathol 1: 251–274, 1962. [PubMed] [Google Scholar]

32. Drumond AL, Meistrich ML, Chiarini-Garcia H. Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach. Reproduction 142: 145–155, 2011. [PubMed] [Google Scholar]

33. Duester G. Retinoic acid synthesis and signaling during early organogenesis. Cell 134: 921–931, 2008. [PMC free article] [PubMed] [Google Scholar]

34. Ebata KT, Zhang X, Nagano MC. Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol Reprod Dev 72: 171–181, 2005. [PubMed] [Google Scholar]

35. Endo T, Romer KA, Anderson EL, Baltus AE, de Rooij DG, Page DC. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci USA. In press. [PMC free article] [PubMed] [Google Scholar]

36. Evans E, Hogarth C, Mitchell D, Griswold M. Riding the spermatogenic wave: profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice. Biol Reprod 90: 108, 2014. [PMC free article] [PubMed] [Google Scholar]

37. Feng CW, Bowles J, Koopman P. Control of mammalian germ cell entry into meiosis. Mol Cell Endocrinol 382: 488–497, 2014. [PubMed] [Google Scholar]

38. Franca LR, Ogawa T, Avarbock MR, Brinster RL, Russell LD. Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod 59: 1371–1377, 1998. [PubMed] [Google Scholar]

39. Gely-Pernot A, Raverdeau M, Celebi C, Dennefeld C, Feret B, Klopfenstein M, Yoshida S, Ghyselinck NB, Mark M. Spermatogonia differentiation requires retinoic acid receptor gamma. Endocrinology 153: 438–449, 2012. [PubMed] [Google Scholar]

40. Griswold M, Hogarth C, Bowles J, Koopman P. Initiating meiosis:the case for retinoic acid. Biol Reprod 86: 35, 2012. [PMC free article] [PubMed] [Google Scholar]

41. Griswold MD, Bishop PD, Kim KH, Ping R, Siiteri JE, Morales C. Function of vitamin A in normal and synchronized seminiferous tubules. Ann NY Acad Sci 564: 154–172, 1989. [PubMed] [Google Scholar]

42. Hao J, Yamamoto M, Richardson TE, Chapman KM, Denard BS, Hammer RE, Zhao GQ, Hamra FK. Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells 26: 1587–1597, 2008. [PubMed] [Google Scholar]

43. Hasegawa K, Saga Y. Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression. Development 139: 4347–4355, 2012. [PubMed] [Google Scholar]

44. He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M. Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells 26: 266–278, 2008. [PMC free article] [PubMed] [Google Scholar]

45. Heller CG, Flageolle BY, Matson LJ. Histopathology of the human testes as affected by bis(dichloroacetyl)diamines. Exp Mol Pathol Suppl 2: 107–114, 1963. [PubMed] [Google Scholar]

46. Hess RA, Schaeffer DJ, Eroschenko VP, Keen JE. Frequency of the stages in the cycle of the seminiferous epithelium in the rat. Biol Reprod 43: 517–524, 1990. [PubMed] [Google Scholar]

47. Hofmann MC. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol 288: 95–103, 2008. [PMC free article] [PubMed] [Google Scholar]

48. Hogarth C, Evans E, Onken J, Kent T, Mitchell D, Petkovich M,Griswold M. The CYP26 enzymes are necessary within the postnatal seminiferous epithelium for normal spermatogenesis. Biol Reprod 93: 19, 2015. [PMC free article] [PubMed] [Google Scholar]

49. Hogarth CA, Amory JK, Griswold MD. Inhibiting vitamin A metabolism as an approach to male contraception. Trends Endocrinol Metab 22: 136–144, 2011. [PMC free article] [PubMed] [Google Scholar]

50. Hogarth CA, Arnold S, Kent T, Mitchell D, Isoherranen N, Griswold MD. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod 92: 37, 2015. [PMC free article] [PubMed] [Google Scholar]

51. Hogarth CA, Evanoff R, Mitchell D, Kent T, Small C, Amory JK, Griswold MD. Turning a spermatogenic wave into a tsunami: synchronizing murine spermatogenesis using WIN 18,446. Biol Reprod 88: 40, 2013. [PMC free article] [PubMed] [Google Scholar]

52. Hogarth CA, Evanoff R, Snyder E, Kent T, Mitchell D, Small C, Amory JK, Griswold MD. Suppression of Stra8 expression in the mouse gonad by WIN 18,446. Biol Reprod 84: 957–965, 2011. [PMC free article] [PubMed] [Google Scholar]

53. Hogarth CA, Griswold MD. The key role of vitamin A in spermatogenesis. J Clin Invest 120: 956–962, 2010. [PMC free article] [PubMed] [Google Scholar]

54. Hogarth CA, Griswold MD. Retinoic acid regulation of male meiosis. Curr Opin Endocrinol Diabetes Obes 20: 217–223, 2013. [PubMed] [Google Scholar]

55. Holdcraft RW, Braun RE. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131: 459–467, 2004. [PubMed] [Google Scholar]

56. Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec 169: 533–557, 1971. [PubMed] [Google Scholar]

57. Ikami K, Tokue M, Sugimoto R, Noda C, Kobayashi S, Hara K, Yoshida S. Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 142: 1582–1592, 2015. [PMC free article] [PubMed] [Google Scholar]

58. Jijiwa M, Kawai K, Fukihara J, Nakamura A, Hasegawa M, Suzuki C, Sato T, Enomoto A, Asai N, Murakumo Y, Takahashi M. GDNF-mediated signaling via RET tyrosine 1062 is essential for maintenance of spermatogonial stem cells. Genes Cells 13: 365–374, 2008. [PubMed] [Google Scholar]

59. Johnson L. A new approach to study the architectural arrangement of spermatogenic stages revealed little evidence of a partial wave along the length of human seminiferous tubules. J Androl 15: 435–441, 1994. [PubMed] [Google Scholar]

60. Johnson L, Petty CS, Neaves WB. A compariative study of daily sperm producion and testicular composition in humans and rats. Biol Reprod 22: 1233–1244, 1980. [PubMed] [Google Scholar]

61. Johnston DS, Olivas E, DiCandeloro P, Wright WW. Stage-specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia. Biol Reprod 85: 763–769, 2011. [PMC free article] [PubMed] [Google Scholar]

62. Jorgensen A, Nielsen JE, Blomberg Jensen M, Graem N, Rajpert-De Meyts E. Analysis of meiosis regulators in human gonads: a sexually dimorphic spatio-temporal expression pattern suggests involvement of DMRT1 in meiotic entry. Mol Hum Reprod 18: 523–534, 2012. [PubMed] [Google Scholar]

63. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315: 820–825, 2007. [PubMed] [Google Scholar]

64. Kluin PM, Kramer MF, de Rooij DG. Spermatogenesis in the immature mouse proceeds faster than in the adult. Int J Androl 5: 282–294, 1982. [PubMed] [Google Scholar]

65. Koruji M, Movahedin M, Mowla SJ, Gourabi H, Arfaee AJ. Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions. In Vitro Cell Dev Biol Anim 45: 281–289, 2009. [PubMed] [Google Scholar]

66. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 103: 2474–2479, 2006. [PMC free article] [PubMed] [Google Scholar]

67. Kubota H, Avarbock MR, Brinster RL. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71: 722–731, 2004. [PubMed] [Google Scholar]

68. Kubota H, Brinster RL. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol 86: 59–84, 2008. [PMC free article] [PubMed] [Google Scholar]

69. Kucia M, Machalinski B, Ratajczak MZ. The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp 66: 331–341, 2006. [PubMed] [Google Scholar]

70. Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann NY Acad Sci 55: 548–573, 1952. [PubMed] [Google Scholar]

71. Li H, MacLean G, Cameron D, Clagett-Dame M, Petkovich M. Cyp26b1 expression in murine Sertoli cells is required to maintain male germ cells in an undifferentiated state during embryogenesis. PloS One 4: e7501, 2009. [PMC free article] [PubMed] [Google Scholar]

72. Lin Y, Gill ME, Koubova J, Page DC. Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 322: 1685–1687, 2008. [PubMed] [Google Scholar]

73. Livera G, Rouiller-Fabre V, Pairault C, Levacher C, Habert R. Regulation and perturbation of testicular functions by vitamin A. Reproduction 124: 173–180, 2002. [PubMed] [Google Scholar]

74. Luetjens CM, Weinbauer GF, Wistuba J. Primate spermatogenesis: new insights into comparative testicular organisation, spermatogenic efficiency and endocrine control. Biol Rev Cambridge Philos Soc 80: 475–488, 2005. [PubMed] [Google Scholar]

75. MacLean G, Li H, Metzger D, Chambon P, Petkovich M. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 148: 4560–4567, 2007. [PubMed] [Google Scholar]

76. Mark M, Jacobs H, Oulad-Abdelghani M, Dennefeld C, Feret B, Vernet N, Codreanu CA, Chambon P, Ghyselinck NB. STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. J Cell Sci 121: 3233–3242, 2008. [PubMed] [Google Scholar]

77. Mark M, Teletin M, Vernet N, Ghyselinck NB. Role of retinoic acid receptor (RAR) signaling in post-natal male germ cell differentiation. Biochim Biophys Acta 1849: 84–93, 2015. [PubMed] [Google Scholar]

78. Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D. The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell 19: 612–624, 2010. [PMC free article] [PubMed] [Google Scholar]

79. McCarrey JR. Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol Reprod 89: 47, 2013. [PMC free article] [PubMed] [Google Scholar]

80. McLaren A. Gonad development: assembling the mammalian testis. Curr Biol 8: R175–177, 1998. [PubMed] [Google Scholar]

81. McLean DJ, Russell LD, Griswold MD. Biological activity and enrichment of spermatogonial stem cells in vitamin A-deficient and hyperthermia-exposed testes from mice based on colonization following germ cell transplantation. Biol Reprod 66: 1374–1379, 2002. [PubMed] [Google Scholar]

82. Mitranond V, Sobhon P, Tosukhowong P, Chindaduangrat W. Cytological changes in the testes of vitamin-A-deficient rats. I. Quantitation of germinal cells in the seminiferous tubules. Acta Anat 103: 159–168, 1979. [PubMed] [Google Scholar]

83. Morales CR, Griswold MD. Retinol induces stage synchronization in seminiferous tubules of vitamin A deficient rats. Ann NY Acad Sci 513: 292–293, 1987. [Google Scholar]

84. Morse D, Cermakian N, Brancorsini S, Parvinen M, Sassone-Corsi P. No circadian rhythms in testis: Period 1 expression is clock independent and developmentally regulated in the mouse. Mol Endocrinol 17: 141–151, 2003. [PubMed] [Google Scholar]

85. Muciaccia B, Boitani C, Berloco BP, Nudo F, Spadetta G, Stefanini M, de Rooij DG, Vicini E. Novel stage classification of human spermatogenesis based on acrosome development. Biol Reprod 89: 60, 2013. [PubMed] [Google Scholar]

86. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 68: 2207–2214, 2003. [PubMed] [Google Scholar]

87. Nakagawa T, Nabeshima Y, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12: 195–206, 2007. [PubMed] [Google Scholar]

88. Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74: 314–321, 2006. [PubMed] [Google Scholar]

89. Niwa H. Open conformation chromatin and pluripotency. Genes Dev 21: 2671–2676, 2007. [PubMed] [Google Scholar]

90. Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev 92: 577–595, 2012. [PMC free article] [PubMed] [Google Scholar]

91. Oatley JM, Brinster RL. Spermatogonial stem cells. Methods Enzymol 419: 259–282, 2006. [PubMed] [Google Scholar]

92. Oatley MJ, Kaucher AV, Racicot KE, Oatley JM. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85: 347–356, 2011. [PMC free article] [PubMed] [Google Scholar]

93. Oulad-Abdelghani M, Bouillet P, Decimo D, Gansmuller A, Heyberger S, Dolle P, Bronner S, Lutz Y, Chambon P. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol 135: 469–477, 1996. [PMC free article] [PubMed] [Google Scholar]

94. Paik J, Haenisch M, Muller CH, Goldstein AS, Arnold S, Isoherranen N, Brabb T, Treuting PM, Amory JK. Inhibition of retinoic acid biosynthesis by the bisdichloroacetyldiamine WIN 18,446 markedly suppresses spermatogenesis and alters retinoid metabolism in mice. J Biol Chem 289: 15104–15117, 2014. [PMC free article] [PubMed] [Google Scholar]

95. Pudney J, Callard GV. Development of agranular reticulum in Sertoli cells of the testis of the dogfish Squalus acanthias during spermatogenesis. Anat Rec 209: 311–321, 1984. [PubMed] [Google Scholar]

96. Purton LE, Dworkin S, Olsen GH, Walkley CR, Fabb SA, Collins SJ, Chambon P. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med 203: 1283–1293, 2006. [PMC free article] [PubMed] [Google Scholar]

97. Raverdeau M, Gely-Pernot A, Feret B, Dennefeld C, Benoit G, Davidson I, Chambon P, Mark M, Ghyselinck NB. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc Natl Acad Sci USA 109: 16582–16587, 2012. [PMC free article] [PubMed] [Google Scholar]

98. Rhinn M, Dolle P. Retinoic acid signalling during development. Development 139: 843–858, 2012. [PubMed] [Google Scholar]

99. Rossant J, Zirngibl R, Cado D, Shago M, Giguere V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5: 1333–1344, 1991. [PubMed] [Google Scholar]

100. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. The classification and timing of spermatogenesis. In: Histological and Histopathological Evaluation of the Testis. St. Louis, MO: Cache River Press, 1990, chapt. 2, p. 41–58. [Google Scholar]

101. Sachs C, Robinson BD, Andres Martin L, Webster T, Gilbert M, Lo HY, Rafii S, Ng CK, Seandel M. Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology 2: 607–614, 2014. [PMC free article] [PubMed] [Google Scholar]

102. Sanz E, Evanoff R, Quintana A, Evans E, Miller JA, Ko C, Amieux PS, Griswold MD, McKnight GS. RiboTag analysis of actively translated mRNAs in Sertoli and Leydig cells in vivo. PloS One 8: e66179, 2013. [PMC free article] [PubMed] [Google Scholar]

103. Savitt J, Singh D, Zhang C, Chen LC, Folmer J, Shokat KM, Wright WW. The in vivo response of stem and other undifferentiated spermatogonia to the reversible inhibition of GDNF signaling in the adult. Stem Cells 30: 732–740, 2012. [PMC free article] [PubMed] [Google Scholar]

104. Schenk T, Stengel S, Zelent A. Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer 111: 2039–2045, 2014. [PMC free article] [PubMed] [Google Scholar]

105. Schulze W, Rehder U. Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res 237: 395–407, 1984. [PubMed] [Google Scholar]

106. Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod 71: 319–330, 2004. [PubMed] [Google Scholar]

107. Singh AK, Dominic CJ. Testicular toxicity of WIN 18446 in the laboratory mouse. Reprod Toxicol 9: 475–481, 1995. [PubMed] [Google Scholar]

108. Smorag L, Xu X, Engel W, Pantakani DV. The roles of DAZL in RNA biology and development. Wiley Interdisciplinary Rev RNA 5: 527–535, 2014. [PubMed] [Google Scholar]

109. Snyder EM, Davis JC, Zhou Q, Evanoff R, Griswold MD. Exposure to retinoic acid in the neonatal but not adult mouse results in synchronous spermatogenesis. Biol Reprod 84: 886–893, 2011. [PMC free article] [PubMed] [Google Scholar]

110. Snyder EM, Small C, Griswold MD. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse. Biol Reprod 83: 783–790, 2010. [PMC free article] [PubMed] [Google Scholar]

111. Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 30: 14–26, 2014. [PMC free article] [PubMed] [Google Scholar]

112. Sugimoto R, Nabeshima Y, Yoshida S. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium. Mech Dev 128: 610–624, 2012. [PubMed] [Google Scholar]

113. Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A. SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 361: 301–312, 2012. [PMC free article] [PubMed] [Google Scholar]

114. Tedesco M, La Sala G, Barbagallo F, De Felici M, Farini D. STRA8 shuttles between nucleus and cytoplasm and displays transcriptional activity. J Biol Chem 284: 35781–35793, 2009. [PMC free article] [PubMed] [Google Scholar]

115. Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 67: 1423–1445, 2010. [PubMed] [Google Scholar]

116. Tong MH, Mitchell D, Evanoff R, Griswold MD. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 85: 189–197, 2011. [PMC free article] [PubMed] [Google Scholar]

117. Tong MH, Yang QE, Davis JC, Griswold MD. Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males. Proc Natl Acad Sci USA 110: 543–548, 2013. [PMC free article] [PubMed] [Google Scholar]

118. Toyoda S, Miyazaki T, Miyazaki S, Yoshimura T, Yamamoto M, Tashiro F, Yamato E, Miyazaki J. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia. Dev Biol 325: 238–248, 2009. [PubMed] [Google Scholar]

119. Unni E, Rao MR, Ganguly J. Histological and ultrastructural studies on the effect of vitamin A depletion & subsequent repletion with vitamin A on germ cells and Sertoli cells in rat testis. Indian J Exp Biol 21: 180–192, 1983. [PubMed] [Google Scholar]

120. Van Pelt AMM, de Rooij DG. Synchronization of the Seminiferous Epithelium after vitamin A replacement in vitamin A-deficient mice. Biol Reprod 43: 363–367, 1990. [PubMed] [Google Scholar]

121. Vernet N, Dennefeld C, Guillou F, Chambon P, Ghyselinck NB, Mark M. Prepubertal testis development relies on retinoic acid but not rexinoid receptors in Sertoli cells. EMBO J 25: 5816–5825, 2006. [PMC free article] [PubMed] [Google Scholar]

122. Vernet N, Dennefeld C, Klopfenstein M, Ruiz A, Bok D, Ghyselinck NB, Mark M. Retinoid X receptor beta (RXRB) expression in Sertoli cells controls cholesterol homeostasis and spermiation. Reproduction 136: 619–626, 2008. [PubMed] [Google Scholar]

123. Vernet N, Dennefeld C, Rochette-Egly C, Oulad-Abdelghani M, Chambon P, Ghyselinck NB, Mark M. Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology 147: 96–110, 2006. [PubMed] [Google Scholar]

124. Viglietto G, Dolci S, Bruni P, Baldassarre G, Chiariotti L, Melillo RM, Salvatore G, Chiappetta G, Sferratore F, Fusco A, Santoro M. Glial cell line-derived neutrotrophic factor and neurturin can act as paracrine growth factors stimulating DNA synthesis of Ret-expressing spermatogonia. Int J Oncol 16: 689–694, 2000. [PubMed] [Google Scholar]

125. Wistuba J, Schrod A, Greve B, Hodges JK, Aslam H, Weinbauer GF, Luetjens CM. Organization of seminiferous epithelium in primates: relationship to spermatogenic efficiency, phylogeny, and mating system. Biol Reprod 69: 582–591, 2003. [PubMed] [Google Scholar]

126. Wolgemuth DJ, Chung SS. Retinoid signaling during spermatogenesis as revealed by genetic and metabolic manipulations of retinoic acid receptor alpha. Soc Reprod Fertil Suppl 63: 11–23, 2007. [PMC free article] [PubMed] [Google Scholar]

127. Wu X, Oatley JM, Oatley MJ, Kaucher AV, Avarbock MR, Brinster RL. The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod 82: 1103–1111, 2010. [PMC free article] [PubMed] [Google Scholar]

128. Wu Z, Falciatori I, Molyneux LA, Richardson TE, Chapman KM, Hamra FK. Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol Reprod 81: 77–86, 2009. [PMC free article] [PubMed] [Google Scholar]

129. Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, Nabeshima Y. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133: 1495–1505, 2006. [PubMed] [Google Scholar]

130. Zhong M, Kawaguchi R, Kassai M, Sun H. How free retinol behaves differently from rbp-bound retinol in RBP receptor-mediated vitamin A uptake. Mol Cell Biol 34: 2108–2110, 2014. [PMC free article] [PubMed] [Google Scholar]

131. Zhou Q, Li Y, Nie R, Friel P, Mitchell D, Evanoff RM, Pouchnik D, Banasik B, McCarrey JR, Small C, Griswold MD. Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol Reprod 78: 537–545, 2008. [PMC free article] [PubMed] [Google Scholar]

132. Zhou Q, Nie R, Li Y, Friel P, Mitchell D, Hess RA, Small C, Griswold MD. Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes. Biol Reprod 79: 35–42, 2008. [PMC free article] [PubMed] [Google Scholar]


Page 2

Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.

Generating the recurring cellular associations that define the cycle of the seminiferous epithelium. The cycle is generated by the precisely timed transition of A spermatogonia (red) into A1 spermatogonia (teal). In the mouse this transition occurs every 8.6 days. In addition, it takes 8.6 days for the A1 spermatogonia to become preleptotene spermatocytes (green) and enter meiosis and an additional 8.6 days ×3 to form elongated spermatids ready for spermiation. The net result is that once fully established the same cell associations or the same group of cell types appear every 8.6 days. In the 8.6-day period between the transition of A spermatogonia to A1 spermatogonia, there is a continuum of development of each cell type. Red, undifferentiated A spermatogonia; blue, differentiating A1 spermatogonia; green, preleptotene spermatocytes; purple, pachytene spermatocytes; orange, round or elongating spermatids; blue, elongated spermatids.

  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.
  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.
  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.
  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.
  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.
  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.
  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.
  • Meiosis occurs only after the onset of puberty while mitosis occurs throughout an entire lifetime.

Click on the image to see a larger version.