O que podemos afirmar sobre o vetor campo elétrico na superfície de num condutor em equilíbrio eletrostático?

O que podemos afirmar sobre o vetor campo elétrico na superfície de num condutor em equilíbrio eletrostático?

Quando um condutor está em equilíbrio eletrostático podemos afirmar que?

(MACKENZIE) Quando um condutor está em equilíbrio eletrostático, pode-se afirmar, sempre, que: ... e) o condutor poderá estar neutro ou eletrizado e, neste caso, as cargas em excesso distribuem-se pela sua superfície.

Quando um condutor esférico e maciço eletricamente carregado se encontra em equilíbrio eletrostático?

e) Quando um condutor esférico e maciço e eletricamente carregado se encontra em equilíbrio eletrostático, o potencial elétrico no interior do condutor é nulo.

O que é o equilíbrio elétrico?

Equilíbrio elétrico é quando o veículo é capaz de repor a mesma quantidade de energia que consome no momento da partida e alimentar o sistema elétrico com o veículo em movimento.

Quais as características do campo elétrico de um condutor esférico eletrizado?

Condutor esférico: a carga elétrica e uma esfera condutora, em equilíbrio eletrostático e isolada de outras cargas, distribui-se uniformemente pela sua superfície, devido à repulsão elétrica. ... a intensidade do campo elétrico na superfície da esfera fica reduzido à metade do campo elétrico muito próximo dessa superfície.

Qual das afirmativas seguintes está correta em relação a um condutor eletrizado que está em equilíbrio eletrostático?

Resposta letra b). Como o condutor está em equilíbrio eletrostático E = 0 no interior do condutor. Isso implica que não há diferença de potencial em qualquer ponto do condutor.

Qual a densidade de um condutor esférico?

  • No caso de um condutor isolado (longe de outros condutores) que esteja eletrizado e em equilíbrio eletrostático, a densidade terá módulo maior nas regiões pontudas. Um condutor esférico de raio R = 3,0 m está uniformemente eletrizado com carga Q = 230 C. Calcule a densidade superficial de cargas na superfície desse condutor.

Por que o campo elétrico é perpendicular à superfície do condutor?

  • A necessidade de o campo elétrico ser perpendicular à superfície do condutor decorre do fato de o condutor estar em equilíbrio eletrostático. Se o campo elétrico fosse inclinado em relação à superfície, como ilustra a Fig.9, haveria uma componente tangencial que provocaria o movimento das cargas elétricas. Fig. 9

Como é atingido o equilíbrio eletrostático?

  • No entanto, após esse curtíssimo intervalo de tempo, é atingido o equilíbrio eletrostático, com os elétrons em excesso distribuídos pela superfície do condutor, como ilustram as figuras 2 e 3. Se o condutor tiver formato esférico (Fig.2) os elétrons se distribuem de modo uniforme pela superfície.

Qual a carga elétrica da esfera de alumínio?

  • Uma esfera de alumínio está carregada eletricamente a um potencial V = 5.000 volts acima do potencial da Terra. Sendo C a capacidade elétrica da esfera, conclui-se que sua carga é:

Blindagem eletrostática é o fenômeno físico que faz com que o campo elétrico seja sempre nulo no interior dos materiais condutores. Isso ocorre devido à forma como as cargas elétricas distribuem-se ao longo da superfície dos condutores em equilíbrio eletrostático.

Resultado de um experimento denominado gaiola de Faraday, a blindagem eletrostática foi descoberta por Michael Faraday, em 1936, e ainda é utilizada em diferentes contextos, a fim de proteger circuitos eletrônicos.

Veja também: Capacitores – meios dielétricos utilizados para armazenar cargas elétricas

Tópicos deste artigo

  • 1 - Quem descobriu a blindagem eletrostática?
  • 2 - Como funciona a blindagem eletrostática?
  • 3 - Aplicações da blindagem eletrostática
  • 4 - Poder das pontas

Quem descobriu a blindagem eletrostática?

A blindagem eletrostática foi descoberta por Michael Faraday (1821-1867), no ano de 1936, por meio de um experimento que ficou conhecido como gaiola de Faraday. O experimento consistia em uma grande gaiola metálica fechada que recebia intensas descargas elétricas, enquanto Faraday permanecia sentado em uma cadeira, sem ser afetado pela corrente elétrica.

O que podemos afirmar sobre o vetor campo elétrico na superfície de num condutor em equilíbrio eletrostático?
O homem da figura está vestido com gaiola de Faraday, que o protege das descargas elétricas.

Como funciona a blindagem eletrostática?

A blindagem eletrostática é também o fenômeno que faz com que o sinal dos celulares, por exemplo, perca intensidade ou até mesmo seja anulado quando estamos no elevador. Graças a esse fenômeno, ficamos seguros dentro dos carros durante uma tempestade de raios: a carroceria dos carros, que é fechada e feita de material condutor, garante que não sejamos expostos aos efeitos nocivos das descargas atmosféricas. Isso acontece porque, no interior de qualquer condutor fechado, o campo elétrico é nulo, mas por que isso ocorre? Observe a figura:

O que podemos afirmar sobre o vetor campo elétrico na superfície de num condutor em equilíbrio eletrostático?
Em condutores carregados, o campo elétrico interno é sempre nulo.

Na figura apresentada, temos um objeto condutor, com excesso de cargas positivas. Perceba que as cargas encontram-se espaçadas o mais distante possível umas das outras, devido à repulsão eletrostática, mas também à mobilidade das cargas elétricas nos condutores. Em virtude desses dois fatores, nos materiais condutores, todas as cargas elétricas em excesso sempre ocupam a superfície do material, de modo que não haja desequilíbrio de cargas elétricas no interior do condutor.

Não pare agora... Tem mais depois da publicidade ;)

Quando colocamos o objeto condutor da figura na presença de um campo elétrico externo, algo interessante acontece: as cargas elétricas deslocam-se de acordo com o sentido do campo elétrico, dessa maneira, o campo elétrico produzido pelas cargas é anulado pelo campo elétrico externo, observe:

O que podemos afirmar sobre o vetor campo elétrico na superfície de num condutor em equilíbrio eletrostático?

Uma vez que o campo elétrico no interior do condutor é nulo, não há diferença de potencial entre quaisquer pontos do condutor, por isso não há movimentação de cargas. Desse modo, quando nos encontramos dentro de algum condutor fechado, ficamos protegidos de interferências elétricas provenientes do meio externo e de ondas eletromagnéticas.

A situação descrita acima nos permite compreender o motivo da blindagem eletrostática afetar o sinal das telecomunicações no interior do elevador, como citado no começo do texto: o campo elétrico das ondas de rádio, que transmitem o sinal de celular, torna-se nulo no interior de um condutor perfeitamente fechado.

Veja também: Eletrostática – estudo das cargas elétricas em repouso

Aplicações da blindagem eletrostática

A blindagem eletrostática é utilizada em um grande número de aplicações tecnológicas. Seu principal intuito é o de proteger componentes sensíveis dos circuitos eletrônicos, que podem sofrer danos se forem expostos a campos elétricos externos.

Alguns aparelhos, como micro-ondas, rádios, televisores, dispositivos de armazenamento, aparelhos de DVD, blu-ray, computadores e notebooks, têm revestimentos metálicos que funcionam como gaiolas de Faraday para protegerem seus circuitos internos.

Poder das pontas

O poder das pontas é a característica dos condutores que faz com que haja maior acúmulo de cargas em regiões pontiagudas, ou de grande curvatura. Isso acontece porque todo condutor em equilíbrio eletrostático tem um campo elétrico interno nulo e, por isso, toda a sua superfície encontra-se sob o mesmo potencial elétrico, em outras palavras, dizemos que a superfície desse condutor é equipotencial.

Veja também: Para que servem os circuitos elétricos?

Uma vez que o potencial elétrico é inversamente proporcional ao raio (r), para que esse potencial elétrico mantenha-se constante ao longo de toda a superfície do condutor, diferentes módulos de carga são necessários nas regiões pontiagudas, onde o raio de curvatura da superfície do condutor é maior em relação às regiões planas do condutor.

O que podemos afirmar sobre o vetor campo elétrico na superfície de num condutor em equilíbrio eletrostático?
Os para-raios têm pontas que promovem maior acúmulo de cargas.

Isso faz com que os raios sejam mais propensos a atingirem os para-raios, que são construídos em material condutor e são pontiagudos em suas extremidades para que possam acumular uma quantidade maior de cargas elétricas, facilitando, assim, a passagem da corrente elétrica.

Por Rafael Helerbrock
Professor de Física

Como se apresenta o campo elétrico em condutores eletrostáticos?

Para que um condutor esteja em equilíbrio eletrostático é necessário que o campo elétrico no seu interior seja nulo pois, se não fosse nulo, provocaria correntes no interior do condutor e ele não estaria em equilíbrio eletrostático. No interior de um condutor em equilíbrio eletrostático, o campo elétrico é nulo.

Por que podemos afirmar que o campo elétrico na superfície de um condutor é perpendicular a superfície?

Nesta situação, outro ponto importante é que o vetor campo elétrico é perpendicular à superfície do condutor. Isso porque essa superfície é equipotencial (todos os pontos têm o mesmo potencial). Por fim, as cargas elétricas em excesso ficam distribuídas na superfície externa do corpo.

Quando um condutor está em equilíbrio eletrostático podemos afirmar sempre que?

Um bom condutor possui elétrons livres. Se esses elétrons não apresentarem nenhum movimento ordenado, diremos que o condutor está em equilíbrio eletrostático. Para que isso ocorra, o campo elétrico no interior do condutor deve ser nulo pois se o campo fosse diferente de zero, provocaria movimento dos elétrons.

Quando um condutor se encontra em equilíbrio eletrostático?

Um condutor se encontra em equilíbrio eletrostático quando nele não ocorre movimento ordenado de cargas elétricas em relação a um referencial fixo no condutor. equilíbrio eletrostático distribuem-se por sua superfície externa.