What is the dominant generation in angiosperms

Was this answer helpful?

     

0 (0)

Thank you. Your Feedback will Help us Serve you better.

A sporophyte (/ˈspɔːr.əˌft/[citation needed]) is the diploid multicellular stage in the life cycle of a plant or alga. It develops from the zygote produced when a haploid egg cell is fertilized by a haploid sperm and each sporophyte cell therefore has a double set of chromosomes, one set from each parent. All land plants, and most multicellular algae, have life cycles in which a multicellular diploid sporophyte phase alternates with a multicellular haploid gametophyte phase. In the seed plants, the largest groups of which are the gymnosperms and flowering plants (angiosperms), the sporophyte phase is more prominent than the gametophyte, and is the familiar green plant with its roots, stem, leaves and cones or flowers. In flowering plants the gametophytes are very reduced in size, and are represented by the germinated pollen and the embryo sac.

What is the dominant generation in angiosperms

Young sporophytes of the common moss Tortula muralis. In mosses, the gametophyte is the dominant generation, while the sporophytes consist of sporangium-bearing stalks growing from the tips of the gametophytes

What is the dominant generation in angiosperms

Sporophytes of moss during spring

The sporophyte produces spores (hence the name) by meiosis, a process also known as "reduction division" that reduces the number of chromosomes in each spore mother cell by half. The resulting meiospores develop into a gametophyte. Both the spores and the resulting gametophyte are haploid, meaning they only have one set of chromosomes.

What is the dominant generation in angiosperms

Diagram showing the alternation of generations between a diploid sporophyte (bottom) and a haploid gametophyte (top)

The mature gametophyte produces male or female gametes (or both) by mitosis. The fusion of male and female gametes produces a diploid zygote which develops into a new sporophyte. This cycle is known as alternation of generations or alternation of phases.

What is the dominant generation in angiosperms

In flowering plants, the sporophyte comprises the whole multicellular body except the pollen and embryo sac

Bryophytes (mosses, liverworts and hornworts) have a dominant gametophyte phase on which the adult sporophyte is dependent for nutrition. The embryo sporophyte develops by cell division of the zygote within the female sex organ or archegonium, and in its early development is therefore nurtured by the gametophyte.[1] Because this embryo-nurturing feature of the life cycle is common to all land plants they are known collectively as the embryophytes.

What is the dominant generation in angiosperms

Cleistocarpous sporophyte of the moss Physcomitrella patens

Most algae have dominant gametophyte generations, but in some species the gametophytes and sporophytes are morphologically similar (isomorphic). An independent sporophyte is the dominant form in all clubmosses, horsetails, ferns, gymnosperms, and angiosperms that have survived to the present day. Early land plants had sporophytes that produced identical spores (isosporous or homosporous) but the ancestors of the gymnosperms evolved complex heterosporous life cycles in which the spores producing male and female gametophytes were of different sizes, the female megaspores tending to be larger, and fewer in number, than the male microspores.[2]

During the Devonian period several plant groups independently evolved heterospory and subsequently the habit of endospory, in which the gametophytes develop in miniaturized form inside the spore wall. By contrast in exosporous plants, including modern ferns, the gametophytes break the spore wall open on germination and develop outside it. The megagametophytes of endosporic plants such as the seed ferns developed within the sporangia of the parent sporophyte, producing a miniature multicellular female gametophyte complete with female sex organs, or archegonia. The oocytes were fertilized in the archegonia by free-swimming flagellate sperm produced by windborne miniaturized male gametophytes in the form of pre-pollen. The resulting zygote developed into the next sporophyte generation while still retained within the pre-ovule, the single large female meiospore or megaspore contained in the modified sporangium or nucellus of the parent sporophyte. The evolution of heterospory and endospory were among the earliest steps in the evolution of seeds of the kind produced by gymnosperms and angiosperms today. The rRNA genes seems to escape global methylation machinery in bryophytes, unlike seed plants.

Alternation of generations

  1. ^ Ralf Reski(1998): Development, genetics and molecular biology of mosses. In: Botanica Acta. Bd. 111, S. 1-15.
  2. ^ Bateman, R. M.; Dimichele, W. A. (1994). "Heterospory - the most iterative key innovation in the evolutionary history of the plant kingdom". Biological Reviews of the Cambridge Philosophical Society. 69 (3): 345–417. doi:10.1111/j.1469-185x.1994.tb01276.x. S2CID 29709953.

  • P. Kenrick & P.R. Crane (1997) The origin and early evolution of plants on land. Nature 389, 33-39.
  • T.N. Taylor, H. Kerp and H. Hass (2005) Life history biology of early land plants: Deciphering the gametophyte phase. Proceedings of the National Academy of Sciences 102, 5892-5897.
  • P.R. Bell & A.R. Helmsley (2000) Green plants. Their Origin and Diversity. Cambridge University Press ISBN 0-521-64673-1

  • Matyášek, Roman, Alice Krumpolcová, Jana Lunerová, Eva Mikulášková, Josep A. Rosselló, and Aleš Kovařík. “Unique Epigenetic Features of Ribosomal RNA Genes (RDNA) in Early Diverging Plants (Bryophytes).” Frontiers in Plant Science 10 (May 2019). https://doi.org/10.3389/fpls.2019.01066.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Sporophyte&oldid=1088897401"

What is the dominant generation in angiosperms

Flowering plants. Why? As you know, flowers come in many different styles and colors, and many are visually pleasing. This aids in pollination. Also notice the anatomy of this Hibiscus flower. Each part has evolved to play a role in the life cycle.

Angiosperms, or flowering plants, are the most abundant and diverse plants on Earth.Angiosperms evolved several reproductive adaptations that have contributed to their success. Like all vascular plants, their life cycle is dominated by the sporophyte generation. A typical angiosperm life cycle is shown in Figure below.

What is the dominant generation in angiosperms

Life cycle of an angiosperm

The flower in Figure above is obviously an innovation in the angiosperm life cycle. Flowersform on the dominant sporophyte plant. They consist of highly specialized male and female reproductive organs. Flowers produce spores that develop into gametophytes. Male gametophytes consist of just a few cells within a pollen grain and produce sperm. Female gametophytes produce eggs inside the ovaries of flowers. Flowers also attract animalpollinators.

If pollination and fertilization occur, a diploid zygote forms within an ovule in the ovary. The zygote develops into an embryo inside a seed, which forms from the ovule and also contains food to nourish the embryo. The ovary surrounding the seed may develop into a fruit. Fruitsattract animals that may disperse the seeds they contain. If a seed germinates, it may grow into a mature sporophyte plant and repeat the cycle.

  • In flowering plants, the gametophyte generation takes place in a flower, which forms on the mature sporophyte plant.
  • Each male gametophyte is just a few cells inside a grain of pollen. Each female gametophyte produces an egg inside an ovule.
  • Pollination must occur for fertilization to take place. Zygotes develop into embryos inside seeds, from which the next sporophyte generation grows.
  1. State the functions of flowers and fruits in angiosperm reproduction.
  2. Create your own cycle diagram to represent the life cycle of a daisy.

What is the dominant generation in angiosperms

LICENSED UNDER

What is the dominant generation in angiosperms