Which of the following is not produced by meiosis?

Meiosis is a process where a single cell divides twice to produce four cells containing half the original amount of genetic information. These cells are our sex cells – sperm in males, eggs in females.

  • During meiosis one cell divides twice to form four daughter cells.
  • These four daughter cells only have half the number of chromosomes of the parent cell – they are haploid.
  • Meiosis produces our sex cells or gametes (eggs in females and sperm in males).

Meiosis can be divided into nine stages. These are divided between the first time the cell divides (meiosis I) and the second time it divides (meiosis II):

Meiosis I

1. Interphase:

  • The DNA in the cell is copied resulting in two identical full sets of chromosomes.
  • Outside of the nucleus are two centrosomes, each containing a pair of centrioles, these structures are critical for the process of cell division.
  • During interphase, microtubules extend from these centrosomes.

2. Prophase I:

  • The copied chromosomes condense into X-shaped structures that can be easily seen under a microscope.
  • Each chromosome is composed of two sister chromatids containing identical genetic information.
  • The chromosomes pair up so that both copies of chromosome 1 are together, both copies of chromosome 2 are together, and so on.
  • The pairs of chromosomes may then exchange bits of DNA in a process called recombination or crossing over.
  • At the end of Prophase I the membrane around the nucleus in the cell dissolves away, releasing the chromosomes.
  • The meiotic spindle, consisting of microtubules and other proteins, extends across the cell between the centrioles.

3. Metaphase I:

  • The chromosome pairs line up next to each other along the centre (equator) of the cell.
  • The centrioles are now at opposites poles of the cell with the meiotic spindles extending from them.
  • The meiotic spindle fibres attach to one chromosome of each pair.

4. Anaphase I:

  • The pair of chromosomes are then pulled apart by the meiotic spindle, which pulls one chromosome to one pole of the cell and the other chromosome to the opposite pole.
  • In meiosis I the sister chromatids stay together. This is different to what happens in mitosis and meiosis II.

5. Telophase I and cytokinesis:

  • The chromosomes complete their move to the opposite poles of the cell.
  • At each pole of the cell a full set of chromosomes gather together.
  • A membrane forms around each set of chromosomes to create two new nuclei.
  • The single cell then pinches in the middle to form two separate daughter cells each containing a full set of chromosomes within a nucleus. This process is known as cytokinesis.

Meiosis II

6. Prophase II:

  • Now there are two daughter cells, each with 23 chromosomes (23 pairs of chromatids).
  • In each of the two daughter cells the chromosomes condense again into visible X-shaped structures that can be easily seen under a microscope.
  • The membrane around the nucleus in each daughter cell dissolves away releasing the chromosomes.
  • The centrioles duplicate.
  • The meiotic spindle forms again.

7. Metaphase II:

  • In each of the two daughter cells the chromosomes (pair of sister chromatids) line up end-to-end along the equator of the cell.
  • The centrioles are now at opposites poles in each of the daughter cells.
  • Meiotic spindle fibres at each pole of the cell attach to each of the sister chromatids.

8. Anaphase II:

  • The sister chromatids are then pulled to opposite poles due to the action of the meiotic spindle.
  • The separated chromatids are now individual chromosomes.

9. Telophase II and cytokinesis:

  • The chromosomes complete their move to the opposite poles of the cell.
  • At each pole of the cell a full set of chromosomes gather together.
  • A membrane forms around each set of chromosomes to create two new cell nuclei.
  • This is the last phase of meiosis, however cell division is not complete without another round of cytokinesis.
  • Once cytokinesis is complete there are four granddaughter cells, each with half a set of chromosomes (haploid):
    • in males, these four cells are all sperm cells
    • in females, one of the cells is an egg cell while the other three are polar bodies (small cells that do not develop into eggs).

Illustration showing the nine stages of meiosis.
Image credit: Genome Research Limited

Can you spare 5-8 minutes to tell us what you think of this website? Open survey

Mitosis and meiosis share some similarities, but also some differences, most of which are observed during meiosis I.

Learning Objectives

  • Compare and contrast mitosis and meiosis

Mitosis and meiosis are both forms of division of the nucleus in eukaryotic cells. They share some similarities, but also exhibit distinct differences that lead to very different outcomes. The purpose of mitosis is cell regeneration, growth, and asexual reproduction,while the purpose of meiosis is the production of gametes for sexual reproduction. Mitosis is a single nuclear division that results in two nuclei that are usually partitioned into two new daughter cells. The nuclei resulting from a mitotic division are genetically identical to the original nucleus. They have the same number of sets of chromosomes, one set in the case of haploid cells and two sets in the case of diploid cells. In most plants and all animal species, it is typically diploid cells that undergo mitosis to form new diploid cells. In contrast, meiosis consists of two nuclear divisions resulting in four nuclei that are usually partitioned into four new haploid daughter cells. The nuclei resulting from meiosis are not genetically identical and they contain one chromosome set only. This is half the number of chromosome sets in the original cell, which is diploid.

Comparing Meiosis and Mitosis: Meiosis and mitosis are both preceded by one round of DNA replication; however, meiosis includes two nuclear divisions. The four daughter cells resulting from meiosis are haploid and genetically distinct. The daughter cells resulting from mitosis are diploid and identical to the parent cell.

The main differences between mitosis and meiosis occur in meiosis I. In meiosis I, the homologous chromosome pairs become associated with each other and are bound together with the synaptonemal complex. Chiasmata develop and crossover occurs between homologous chromosomes, which then line up along the metaphase plate in tetrads with kinetochore fibers from opposite spindle poles attached to each kinetochore of a homolog in a tetrad. All of these events occur only in meiosis I.

When the tetrad is broken up and the homologous chromosomes move to opposite poles, the ploidy level is reduced from two to one. For this reason, meiosis I is referred to as a reduction division. There is no such reduction in ploidy level during mitosis.

Meiosis II is much more similar to a mitotic division. In this case, the duplicated chromosomes (only one set, as the homologous pairs have now been separated into two different cells) line up on the metaphase plate with divided kinetochores attached to kinetochore fibers from opposite poles. During anaphase II and mitotic anaphase, the kinetochores divide and sister chromatids, now referred to as chromosomes, are pulled to opposite poles. The two daughter cells of mitosis, however, are identical, unlike the daughter cells produced by meiosis. They are different because there has been at least one crossover per chromosome. Meiosis II is not a reduction division because, although there are fewer copies of the genome in the resulting cells, there is still one set of chromosomes, as there was at the end of meiosis I. Meiosis II is, therefore, referred to as equatorial division.

LICENSES AND ATTRIBUTIONS

CC LICENSED CONTENT, SHARED PREVIOUSLY

CC LICENSED CONTENT, SPECIFIC ATTRIBUTION

  • OpenStax College, Biology. October 16, 2013. Provided by: OpenStax CNX. Located at: //cnx.org/content/m44468/latest...ol11448/latest. License: CC BY: Attribution
  • OpenStax College, The Process of Meiosis. October 28, 2013. Provided by: OpenStax CNX. Located at: //cnx.org/content/m44469/latest/. License: CC BY: Attribution
  • haploid. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/haploid. License: CC BY-SA: Attribution-ShareAlike
  • diploid. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/diploid. License: CC BY-SA: Attribution-ShareAlike
  • gamete. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/gamete. License: CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Introduction. October 16, 2013. Provided by: OpenStax CNX. Located at: //cnx.org/content/m44468/latest...7_00_02abc.jpg. License: CC BY: Attribution
  • OpenStax College, Biology. October 16, 2013. Provided by: OpenStax CNX. Located at: //cnx.org/content/m44469/latest...ol11448/latest. License: CC BY: Attribution
  • Boundless. Provided by: Boundless Learning. Located at: www.boundless.com//biology/de...orial-division. License: CC BY-SA: Attribution-ShareAlike
  • ploidy. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/ploidy. License: CC BY-SA: Attribution-ShareAlike
  • reduction division. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/reduction_division. License: CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Introduction. October 16, 2013. Provided by: OpenStax CNX. Located at: //cnx.org/content/m44468/latest...7_00_02abc.jpg. License: CC BY: Attribution
  • OpenStax College, The Process of Meiosis. October 16, 2013. Provided by: OpenStax CNX. Located at: //cnx.org/content/m44469/latest...e_11_01_06.jpg. License: CC BY: Attribution

Última postagem

Tag