No trecho como eles têm grande massa de material metálico

A segunda lei de Ohm descreve quais grandezas físicas relacionam-se com a resistência elétrica de um condutor. De acordo com essa lei, a resistência elétrica de um condutor homogêneo é diretamente proporcional ao seu comprimento e inversamente proporcional à área transversal desse condutor.

Veja também: Aprenda o que é e saiba como calcular a corrente elétrica

Fórmula da 2ª lei de Ohm

A segunda lei de Ohm mostra que a resistência de um condutor é relacionada à sua forma mas também a fatores microscópicos, descritos com base em uma grandeza física chamada resistividade.

A resistividade é a grandeza física que mede a oposição que algum material oferece ao fluxo de cargas elétricas, ou seja, materiais de alta resistividade oferecem grande resistência à passagem de corrente elétrica.

A fórmula de segunda lei de Ohm é mostrada a seguir, observe:

R – Resistência (Ω)

ρ – Resistividade (Ω.m)

l – Comprimento (m)

A – Área transversal (m²)

De acordo com essa fórmula, a resistência elétrica de um fio condutor é diretamente proporcional ao seu comprimento, além disso, é inversamente proporcional à área de sua secção transversal (chamada coloquialmente de bitola). É por esse motivo que utilizamos fios mais grossos em aplicações que demandem correntes elétricas de grande intensidade — eles têm menor resistência elétrica e, por esse motivo, dissipam menos energia em forma de calor.

Resistividade

A segunda lei de Ohm indica que a resistência elétrica é uma propriedade do corpo, uma vez que essa característica depende diretamente de medidas espaciais, como a área transversal ou o comprimento do corpo.

A resistividade (ρ) é uma grandeza física escalar (medida em Ω.m) que não depende das dimensões do corpo, mas sim de propriedades microscópicas, como a quantidade de elétrons de condução do material e também a distância que esses elétrons conseguem percorrer sem se colidirem com os átomos que compõem o material.

Veja também: Descubra quais são e como funcionam os elementos de um circuito elétrico

Primeira lei de Ohm

De acordo com a primeira lei de Ohm, a razão entre potencial elétrico e corrente elétrica é sempre constante em resistores ôhmicos, como mostrado na fórmula seguinte:

U – tensão elétrica ou diferença de potencial (V)

R – resistência elétrica (Ω)

i – corrente elétrica (A)

De acordo com a fórmula, a resistência elétrica é a medida relacionada à corrente formada mediante a aplicação de um potencial elétrico: quanto maior for a resistência elétrica de um material, maior será o potencial elétrico necessário para que ocorra o estabelecimento de uma corrente elétrica.

Veja também: Aprenda a calcular a força eletromotriz dos geradores elétricos

No trecho como eles têm grande massa de material metálico
A resistência elétrica depende, entre outros fatores, da espessura dos condutores.

Exercícios resolvidos sobre a segunda lei de Ohm

Questão 1) Determine a resistência elétrica de um fio condutor de 20 metros de comprimento, com área transversal de 8 mm² e resistividade igual a 1,7.10-8 Ω.m.

a) 625 Ω

b) 4,25 Ω

c) 150 Ω

d) 32 Ω

e) 25 Ω

Gabarito: Letra b

Resolução:

Antes de fazermos o cálculo da resistência elétrica, precisamos converter a área transversal do fio, que está em mm², para a unidade de m² (8 mm² = 8.10-6 m²).

Para calcular a resistência desse fio condutor, faremos uso da segunda lei de Ohm, observe:

De acordo com o cálculo, a alternativa correta é a letra b.

Questão 2) Dispõe-se de um fio condutor de formato cilíndrico, resistência R, resistividade ρ, comprimento L e área transversal A. Mantendo-se fixos os demais parâmetros, qual deve ser a resistência elétrica, escrita em termos de R, de um fio com diâmetro quatro vezes maior?

a) 8R

b) R/4

c) 2R

d) R/16

e) R/8

Gabarito: Letra d

Resolução:

Como descrito no enunciado, o fio tem formato cilíndrico, isso indica que a área transversal desse fio é de formato circular. A área de uma circunferência, por sua vez, é proporcional ao quadrado do raio (A α r²), portanto, se o segundo fio tem diâmetro quatro vezes maior, seu raio será quatro vezes maior, e sua área transversal, 16 vezes maior.

Uma vez que a área transversal do fio é 16 vezes menor, sua resistência será 16 vezes menor, portanto, a alternativa correta é a letra d.

Questão 3) Em relação à segunda lei de Ohm, assinale a alternativa correta:

a) A resistência elétrica depende tanto de fatores geométricos quanto de fatores microscópicos.

b) A resistência elétrica não depende de quaisquer fatores macroscópicos, como o comprimento ou a área transversal do condutor.

c) A resistência elétrica é uma grandeza física vetorial medida em Ω.m.

d) A resistência elétrica é diretamente proporcional à área transversal do fio.

e) Resistência e resistividade são grandezas inversamente proporcionais.

Gabarito: Letra a

Resolução:

Vamos fazer a análise das alternativas:

a – VERDADEIRO.

b – FALSO. A resistência elétrica é macroscópica e depende de fatores geométricos, no entanto, depende da resistividade, que é de origem microscópica.

c – FALSO. A resistência elétrica é escalar e sua unidade de medida é somente Ω.

d – FALSO. Resistência elétrica e área transversal são grandezas inversamente proporcionais.

e – FALSO. Resistência e resistividade são grandezas físicas diretamente proporcionais.

Por Rafael Helerbrock
Professor de Física
 

Os metais estão ligados por retículos cristalinos, sendo que cada átomo fica circundado por 8 ou 12 outros átomos do mesmo elemento metálico, tendo, portanto, atrações iguais em todas as direções.

Além disso, visto que os átomos dos metais possuem apenas 1, 2 ou 3 elétrons na última camada eletrônica (e essa camada normalmente é bem afastada do núcleo, e, consequentemente, atrai pouco os elétrons); o resultado é que os elétrons escapam facilmente e transitam livremente pelo reticulado. Uma “nuvem” ou “mar” de elétrons livres funciona então como uma ligação metálica, mantendo os átomos unidos.

Essa estrutura em retículos e esse tipo de ligação química resultam em uma série de propriedades que são características dos átomos. Veja as principais delas:

  • Condução de eletricidade: os metais são ótimos condutores de eletricidade, sendo, em razão dessa propriedade, muito utilizados em fios elétricos. Essa propriedade é explicada pelo fato de que como os metais possuem um “mar” de elétrons livres, ou deslocalizados, esses elétrons permitem a transição rápida de eletricidade através do metal. Quando submetidos a uma voltagem externa, esses elétrons livres dirigem-se ao polo positivo da fonte externa. Esse movimento dos elétrons é o que chamamos de corrente elétrica.

No trecho como eles têm grande massa de material metálico

  • Condução de calor: a explicação para o fato de os metais serem bons condutores térmicos é baseada na presença dos elétrons livres que são dotados de movimento, como foi explicado no item anterior. Esses elétrons permitem o trânsito rápido do calor; e por isso os metais são usados em panelas e caldeiras industriais.

No trecho como eles têm grande massa de material metálico
  • Densidade elevada: normalmente os metais são densos, em virtude das estruturas compactas dos retículos cristalinos.

No trecho como eles têm grande massa de material metálico
  • Pontos de fusão e ebulição altos: a força de atração causada pelo “mar” de elétrons livres é muito forte, mantendo os átomos unidos com muita intensidade. Assim, para que se rompa essa ligação é preciso fornecer altas energias externas.

Essa é uma característica que permite o uso dos metais em caldeiras, tachos e reatores nucleares, onde ocorrem aquecimentos intensos e eles não derretem. O tungstênio (W) é um exemplo muito importante, pois ele é o metal de maior ponto de fusão (3 403, 85 ºC), sendo usado na fabricação de filamentos de lâmpadas incandescentes.

No trecho como eles têm grande massa de material metálico
  • Resistência à tração: os fios metálicos são muito resistentes às forças que se aplicam sobre eles ao serem puxados ou alongados. Isso ocorre porque a intensidade da ligação metálica é muito elevada e difícil de romper.

Em virtude dessa propriedade, esses metais são aplicados em cabos de aço de elevadores ou de veículos suspensos (como o bondinho do Pão de Açúcar, no Rio de Janeiro) e em vergalhões de aço colocados dentro de estruturas de concreto armado em pontes e edifícios.

No trecho como eles têm grande massa de material metálico
  • Maleabilidade e ductibilidade: maleabilidade é a capacidade de moldar os metais em lâminas finas, por martelar o metal aquecido ou passá-lo por cilindros laminadores; e a ductibilidade é a transformação de fios por fazer o metal passar por furos sob aquecimento. Essas duas propriedades resultam do fato de os átomos dos metais poderem “escorregar” uns sobre os outros.

As chapas ou lâminas metálicas são muito usadas na produção de veículos, trens, aviões, navios, geladeiras, embalagens de alumínio, decoração, bandejas, etc. Já os fios são usados na confecção de cabos, arames e fios elétricos.